
Maxwell Hutchinson, Alexander Heinecke, Hans Pabst, Greg Henry, Matteo

Parsani, and David Keyes

Parallel Computing Lab, Intel Labs, USA

2016-06-22 International Supercomputing Conference (ISC)

Frankfurt, Germany

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL

OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL

ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY,

RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A

PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER

INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel

microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer

systems, components, software, operations and functions. Any change to any of those factors may cause the results to

vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated

purchases, including the performance of that product when combined with other products.

Copyright © 2016, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel

logo are trademarks of Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are

not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other

optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for

use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel

microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the

specific instruction sets covered by this notice.

Notice revision #20110804

2

Rayleigh-Taylor Instability (RTI)

Occurs when a dense fluid is supported by a lighter one

 The dense fluid falls through the lighter fluid in “spikes”

 The light fluid rises through the dense fluid in “bubbles”

Pumps energy into the system at small scales

 Particularly difficult to model

3

Rayleigh-Taylor Instability Applications

• Natural convection in the oceans and atmosphere

• Heat transport in coolant in nuclear reactors

• Stellar remnants in supernova

• Fuel-ablator mix in inertial confinement fusion

– RTI transports carbon-laden ablator into the hydrogen fuel

– Carbon radiates energy away, lowering temperature

– Hydrogen fails to fuse (“ignite”)

The RTI is a priority research direction for the

national ignition facility of the USA at LLNL

4

Boussinesq single-mode RTI

Assume the fluids have nearly the same density

Assume the initial perturbation is small and sharp

Assume the fluids have the same viscosity

Restrict the initial condition to a single frequency

This makes the problem well-posed with two

parameters:

 The Grashof number (Gr) compares the buoyant to

viscous forces

 The Schmidt number (Sc) compares the diffusion of

momentum and mass

5

Boussinesq single-mode RTI and model fitting

Now the problem is a mapping from the Grashof and Schmidt number to the trajectory of

the rising bubble:

𝐺𝑟, 𝑆𝑐 ⇒ 𝐻 𝑡

Typically, mapping is evaluated via simulation of Navier-Stokes

– 3D non-linear PDEs are hard to solve correctly

– Direct numerical simulations are expensive: millions of core-hours typically

Instead, we can try to approximate the dynamics with simpler buoyancy-drag models

– ODEs are much easier to solve numerically

 𝐻 =
𝐶0𝐴𝑔𝜆

2𝐻 + 𝐶1𝜆
2 𝐻2 + 𝐶2𝜆𝐻 𝐻

𝐶3𝜆
3 + 𝐶4𝜆

2𝐻

The ODE approximate has undetermined parameters: the C’s

– Let’s fit them! -> Our approach

– “Nonlinear supervised learning”

6

Generating the data set

We want to cover the two-dimensional (Gr, Sc) input space

We are interested specifically in the error in the trajectory H(t)

We have an error scale based on the quality of the ODE

 If the training data is much more accurate than the ODE, it is overkill

What is the most efficient discretization for generating this data?

 Which discretization that satisfies our accuracy requirement consumes the

fewest cycles?

7

8

Several Variables at the End of the Simulation

NekBox is a stripped-down of Nek5000 for box-shaped domains

NekBox solves the incompressible Navier-Stokes equations:

Incl. advection-diffusion equations for scalar variables such as temperature or

mass fractions.

Nek uses the spectral element method (SEM):

• A tensor product of Gauss-Lobatto-Legendre (GLL) quadrature points

within each element -> N^3 DOFs per element

• Continuity across elements -> forming a mesh (using direct stiffness

summation)

Operators are written as element local operators:

which reduces the complexity from O(N^6) to O(N^4).

9

NekBox

Spectral Element Method (SEM)

Spatial discretization with two levels:

 Unstructured mesh of elements coupled by continuity at faces, edges

– only nearest neighbours communication with depth 1, independent of

the polynomial order

 Tensor product of Gauss-Lobatto-Legendre points within each element

– small dense matrix multiplication (DGEMM) is the key kernel with Inner

dimension (k) being the 1D size, not the 3D size, e.g. 4, 8, 16, 32

The mesh is good at matching geometry and boundary conditions

 Polynomial convergence w.r.t. mesh refinement

The GLL points are highly accurate

 Exponential convergence w.r.t. polynomial order

10

key ingredients for

scalable and

efficient code!

A typical NekBox run spends <1% in sparse computations & communications,

~40% in vector-vector or matrix-vector operations, ~60% matrix-matrix

operations.

Helmholtz operator:

Basis transformation:

Gradient calculation:

11

NekBox’s main compute routines

 Batched GEMM is not beneficial as it

would mean loosing locality

Interface (C/C++ and FORTRAN API)

Simplified interface for matrix-matrix multiplications

• cm x n = cm x n + am x k * bk x n (also full xGEMM)

Highly optimized assembly code generation (inline, *.s, JIT byte-code)

• SSE3, AVX, AVX2, IMCI, and AVX-512

• AVX-512 code quality

• Maximizes number of immediate operands

• Limits instruction width to 16 Byte/cycle

High level code optimizations

• Implicitly aligned leading dimension (LDC) – allows aligned store instr.

• Aligned load instructions

• Sophisticated data prefetch

License

• Open Source Software (BSD 3-clause license)*, https://github.com/hfp/libxsmm

12

LIBXSMM: Implementation

• NekBox performs vector stores that overwrite memory on necessarily unaligned

data

• Regular unaligned stores would issue RFOs (read for ownership), which consume

read BW

• Aligned non-temporal stores via peeling allow us to override the data without

RFOs, increasing “useful” bandwidth

13

Element Updates with non-temporal Stores

• Mira is a IBM BlueGene/Q with 49,152 nodes hosted at ANL in the US. Each

node has 16 cores with 4 hardware threads per core and can support 204.8

GFLOPS and 30 GiB/s main memory bandwidth. (FLOP/BYTES ~ 6)

• Shaheen is a Cray XC40 with 6144 nodes hosted at KAUST in Saudi Arabia.

Each node has two Intel® Xeon® E5-2698v3 (code-named Haswell)

processors with 16 cores each and can support around 1177.6 GFLOPS and

101.6 GiB/s main memory bandwidth, combined on both NUMA domains.

(FLOPS/BYTE ~10)

 Shaheen’s cores therefore have 2.9× the floating point and 1.7× the memory

bandwidth of Mira’s BlueGene/Q cores.

14

Systems we used in this Study

15

Helmholtz Op. and Basis Transf. on Shaheen

Performance of reproducers for the Helmholtz operator (top) and Basis Transformation

(bottom) using different implementation for the small matrix multiplications. NTS denotes

the usage of non-temporal stores. Measured on Shaheen (32 cores of HSW-EP, 2.3 GHz)

16

Helmholtz-Operator on Mira (BG/Q) vs. Shaheen

Performance of reproducer for the Helmholtz operator reproducer on Mira (top) and

Shaheen (bottom). IBM Blue Gene/Q doesn’t offer unaligned memory support for vector

instructions and Intel Xeon benefits from more flexible hardware and its optimal utilization

through LIBXSMM. mxm_bgq is an assembly library for Mira.

• Plot (a) confirms that all executions on Shaheen (circles) are bandwidth bound

and Mira (crosses) is getting compute bound for higher orders

• This is due to the Xeon’s stronger core + LIBXSMM which results into a

significant speed-up wrt. time-to-solution as shown in Figure (b)

17

Identifying the optimal spectral order: Performance

+/- 20%

+/- 65%

18

Identifying the optimal spectral order: Accuracy

Log-base 2 error of bubble height and mix volume on Shaheen and Mira,

wrt. to time to solution.

We can see that high orders are favorable as they better match modern hardware and have

superior convergence speed as they stay memory bandwidth bound for high orders.

19

Performance at Petascale (Shaheen at KAUST)

0

0.5

1

1.5

2

2.5

0

2

4

6

8

10

12

8,192 16,384 32,768 65,536 131,072

G
iB

/s
 p

e
r

c
o

re

G
F

L
O

P
S

 p
e
r

c
o

re
total GFLOPS per core Helmholtz GFLOPS per core

total GiB/s per core Helmholtz GiB/s per core

0

0.5

1

1.5

2

2.5

0
2
4
6
8

10
12

16,384 131,072

G
iB

/s
 p

e
r

c
o

re

G
F

L
O

P
S

 p
e

r
c

o
re

total GFLOPS per core HH. GFLOPS per core
total GiB/s per core HH. GiB/s per core

Strong Scaling NekBox (3.1 GiB/s/core peak measured by stream TRIAD)

Weak Scaling NekBox (3.1 GiB/s/core peak)

More than 1.3 PFLOPS

More than one PFLOPS

Excellent scaling for

weak and strong

cores

cores

20

Xeon Phi 7250 (Knights Landing) results

0.00%

50.00%

100.00%

150.00%

200.00%

%
 o

f
X

e
o

n
 E

5
-2

6
9
7
v
4 Single Core Intel Xeon Phi Top-Bin relative to Xeon E5-2697v4 - LIBXSMM

0.00%

100.00%

200.00%

300.00%

400.00%

8 16 32 8 16 32 8 16 32%
 o

f
2
x
 E

5
-2

6
9
7
v
4

Helmholtz Operator Gradient Operator Basis Transformation

Intel Xeon Phi Top-Bin relative to 2x Xeon E5-2697v4 - LIBXSMM

• We showcase two keys for achieving on-node performance with Petascale

Intel architectures:

• Runtime code generation to accelerate the small GEMMs needed in SEM

• Non-temporal stores to free memory bandwidth from RFOs

• Even with modern and powerful nodes, the Spectral Element Method is a

good fit for large scale computing as it offers excellent weak and strong

scaling properties

• These technologies allow us to push the efficiency frontier of SEM to very high

orders where exponential convergence reduces computational cost

• Compared to Mira, Shaheen is up to 6x faster, outperforming the 2.9x

difference in compute and 1.7x in bandwidth

• Due to more efficient instructions and deep out-of-order execution with

LIBXSMM on Intel architectures

21

Conclusion

